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Abstract 

 
Aim: The aim of the research is to improve the early identification rate of epileptic seizures using 
the Innovative Adaptive logistic regression algorithm in comparison with naive bayes algorithm. 
Methods and Materials: The total of 6426 samples are collected from the UCI repository. Group 1 
represents the Innovative Adaptive logistic regression algorithm and group 2 represents the naive 
bayes algorithm. The G power calculation was done with 80% of power and alpha of 0.05. Each 

group with 20 samples were taken for SPSS analysis. Results: The Innovative Adaptive logistic 
regression algorithm has achieved the accuracy, Precision, Recall and Specificity of 97.0 %, 95 %, 
90 %, and 89 % when compared to naive bayes algorithm with 78 %, 94 %, 78 % and 74 %. The 
logistic regression algorithm has achieved the significance of 0.043 (p < 0.05). Conclusion: In this 
study it is concluded that the logistic regression algorithm has significantly greater accuracy when 
compared with the naive bayes algorithm. 
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INTRODUCTION 

 

Epilepsy Seizures are caused by a disease in which nerve cell activity in the brain is 

disrupted. Epilepsy can be caused by a genetic condition or an acquired brain injury such 

as a stroke or trauma is a disease that causes frequent seizures and it is one of the most 

prevalent severe neurological conditions. Prediction and detection at the early stage is 

mandatory to avoid serious damage to the human brain cells and accurate detection of 

genetic epilepsy also plays a major role in today’s situation (Logesparan, Rodriguez-

Villegas, and Casson 2015). Electroencephalography (EEG) is useful for identifying 

epilepsy since it detects variations in voltage fluctuations across electrodes around the 

subject's scalp and provides temporal and spatial detail about the brain (Satapathy et al. 
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2019) (Siuly, Li, and Zhang 2017). In this study the early identification rate of it’s 

concluded that the novel logistic regression algorithm has significantly greater 

classifications accuracy when compared with the naive bayes algorithm. The major 

applications of the EEG is considered the main Neurophysiological study used in the 

Identifying (Paul and Bhatia 2020). Diseases and Diagnosis, Drug Discovery and 

Manufacturing, Smart Health Records, Medical Imaging Diagnosis, outbreak prediction and 

iris monitoring (Thrun, Saul, and Schölkopf 2004) (Varma, Deekshitha Varma, and 

Priyanka 2022). 

 

In the past five years, numerous research papers on epilepsy diagnosis have been 

published. In IEEE xplore 19 articles were published and 101 articles were published in 

google scholar. (Ein Shoka et al. 2021) proposed an EEG classification method and 

performed a cognitive task and determined the seizure occurrence and achieved the better 

detection rate. (Hu and Zhang 2019) proposed KNN classification and achieved the 

detection rate of in terms of accuracy. (Paul, Bhattacharya, and Bit 2019) used an 

independent complement analysis method for feature selection, because of unrelated 

feature selection the percentage of epilepsy detection in terms of precision, sensitivity, 

and specificity. (Ghazali et al. 2019) proposed comparison between Naive Bayes and KNN, 

Naive Bayes Provides high identification rate. (Abraham et al. 2018) comparison 

classification algorithms between Decision tree, KNN, Bayesian, and concluded that the 

Decision Tree's algorithms are more accurate. (Chowdhury et al. 2021) proposed and 

compared LNB with KNN, KNNDW and LWNB it showed that ICLNB algorithm performs 

significantly more accuracy. 

 

Previously our team has a rich experience in working on various research projects across 

multiple disciplines (Venu and Appavu 2021; Gudipaneni et al. 2020; Sivasamy, 

Venugopal, and Espinoza-González 2020; Sathish et al. 2020; Reddy et al. 2020; Sathish 

and Karthick 2020; Benin et al. 2020; Nalini, Selvaraj, and Kumar 2020).The existing 

system has a drawback in that EEG signals are sampled at different sampling frequencies 

to remove artifacts, which results in the loss of major attributes and reduces prediction 

speed and classification accuracy. Therefore, the proposed system focused on selecting 

data sampled at the same frequency and validating it using an innovative adaptive logistic 

regression algorithm rather than a naive bayes algorithm. 

 

MATERIALS AND METHODS 

 

The proposed research was conducted in the Transducer lab, Department of Electronics 

and Communication Engineering, Saveetha School of Engineering at Saveetha Institute of 

Medical and Technical Sciences. This analysis consists of two different groups, group 1 as 

a logistic regression algorithm and group 2 as a naive bayes algorithm. A total of 6426 

data samples were taken from two groups. The group 1 with 20 samples and group 2 with 

20 samples were used in this analysis. The sample size was estimated for each group using 

a G Power calculator with 80% of pretest power, alpha error of 0.95 (Bugeja, Garg, and 

Audu 2016a). 

 

Logistic regression Algorithm 

Logistic regression is one of the most popular Machine Learning algorithms, which comes 

under the Supervised Learning technique. It is used for predicting the categorical 

dependent variable using a given set of independent variables. 

The steps involved in Logistic regression algorithm : 

Step-1:Data Preprocessing step. 

Step-2:Fitting Logistic Regression to the Training set. 

Step-3:Predicting the test result. 

Step-4:Test accuracy of the result (Creation of Confusion matrix) 

Step-5:Visualising the test set result. 
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Naive Bayes Algorithm  

 

The Naive Bayes Classifier is a supervised learning technique that uses Bayes theorem 

with intermediate naïve assumptions to perform probabilistic classification represented in 

Equation (1). Here's how the Bayes rules work: 

 

     𝑃(𝐵𝑗 |𝐴)  =  𝑃(𝐵𝑗)𝑃(𝐴|𝐵𝑗) 𝑃(𝐴)  (1) 

Step 1: Pre-process/prepare the data with a naïve bayes classifier so that we can use it 

effectively in our code. 

Step 2: Use the Naive Bayes Classifier model to fit the data to the Training set. 

Step 3: Use the predict function to generate predictions about the test set outcomes. 

Step 4: Using the Confusion matrix, test the accuracy of the Naive Bayes classifier. 

Step 5: Using the Naive Bayes Classifier, visualise the training set results. 

 

Python is used to set up the testing setup for the logistic regression and Naive Bayes 

algorithms (2021). The PYTHON (Subasi 2020) programme requires an 8th generation 

Intel i5 processor with 4GB of RAM as a minimum system requirement. It offers a user-

friendly environment for algorithm development, data visualisation, data analysis, and 

numerical calculation. Equations (2) to (5) are useful for determining the suggested 

algorithm's accuracy, sensitivity, specificity, and recall. 

 

                

   Accuracy  = (TP  +  TN) /(TN + FP +TP +FN)   (2) 

              

   Sensitivity    = TP/(TP  +  FN)            (3) 

                                                                              

                Specificity  = TN/(TN + FP)                                                          (4)  

                                          

    Recall = TP/(TP  +  FN)                                                                 (5)                   

 

Statistical Analysis 

  

For the statistical analysis of this proposed work, IBM SPSS (Bhattacharya and 

Chakraborty 2020) was employed. Independent sample t-tests are used to examine the 

dependent and independent variables. For classification outbreak prediction of accuracy, 

specificity, precision, recall, and Mean Deviation, independent sample t-tests were used. 

Mean, Variance, Standard Deviation are considered as independent variables, whereas the 

Accuracy, Precision, Specificity and Recall are considered dependent variables (Hu and 

Zhang 2019). 

 

RESULTS 

 

The comparison features extraction techniques used with innovative adaptive logistic 

regression algorithms. In this Adaptive logistic regression algorithm obtains significantly 

better accuracy in comparison with the naive bayes algorithm for Early Identification Rate. 

Figure 1 represnts the categorical dependent variable's outcome is outbreak prediction 

using logistic regression. Instead of fitting a regression line, a "S '' shaped logistic function 

can be fitted, which predicts two minimum values of 0.3 and a maximum value of 0.8. Fig. 

2 shows the y-axis indicates the mean percentage of classification accuracy, precision, 

specificity, and recall for the group of naive bayes and logistic regression, with the Error 

Bars being 95% CI and the Error Bars being +/-2SD. 

Table 1 shows the selected classifiers using the logistic regression algorithm, the practical 

values of accuracy, precision, recall, and specificity are 97%, 95%, 90%, 89%, and for 

the naive bayes algorithm, 78 %, 94 %, 78 %, 74 %. The logistic algorithm outperforms 

the naïve bayes algorithm in terms of accuracy and specificity. Table 2 denotes the 

statistical analysis of logistic regression algorithm and naive bayes algorithm with the 

https://paperpile.com/c/nRnWp5/EbVJI
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mean accuracy, standard deviation and standard error mean where logistic regression 

algorithms has 95.60 of mean accuracy, 7.450 of standard deviation and 3.332 standard 

error. Table 3 represents the t-test using independent samples for determining significance 

and standard error. P values of less than (P<0.05) are deemed statistically significant, and 

95% confidence intervals are used to calculate the results. 

 

DISCUSSION 

 

In this analysis, performance of Adaptive Logistic regression Algorithm and Naive Bayes 

Algorithm is analysed in this work, with an accuracy of 97 %, precision of 95 %, specificity 

of 90 %, and recall of 89 % (P<0.05). In comparison to the Naive Bayes Algorithm, the 

suggested work shows that the Logistic regression Algorithm performs better classification. 

 

For the datasets considered in this study, the naive bayes algorithm is able to classify 

Epileptic seizures with moderate classification of outbreak prediction accuracy of 94% 

(Bugeja, Garg, and Audu 2016b). This study is concerned with a comparative analysis 

between the algorithms SVM and KNN employed for EEG based epileptic seizure 

identification. Furthermore, this study will focus on patient-independent classifiers as they 

are more complicated due to the EEG variability and achieved classification accuracy of 

93.2% (D’Elios and Rizzi 2018). This work aims to find a classifier for the purpose of 

personalised seizure detection using K-Nearest Neighbour and Support Vector Machines 

as classifiers. Both methods achieved accuracies over 80 percent, with KNN performing a 

bit better than SVM, and an onset sensitivity of 100 percent when tested on ten patients 

(Esposito et al. 2019; Siddiqui et al. 2020). (Lutsenko, Pechurina, and Sergeev 2018) The 

Reveal Algorithm uses the same data from UCI repository, with accuracy considerably 

higher to 76,7%. Proposed the patient specific classifiers with the accuracy significantly 

lower, than the expected outbreak prediction classification accuracy of 61% (Esposito et 

al. 2019; S et al. 2019). 

 

The analysis made by (Islam et al. 2019; Malik and Amin 2017) they have used the raw 

EEG data of 20 epileptic patients who were under treatment. The goal of their work was 

to create a system for automatically searching for the optimum DWT settings in order to 

increase classification accuracy of outbreak prediction (accuracy > 90%) and reduce the 

computational expense of seizure detection (Chen et al. 2017). The main idea behind our 

study is to analyse and depict limitations of existing machine learning approaches that are 

being used in solving the data imbalance problem and to propose a highly efficient solution 

to resolve this issue (Yuan et al. 2017). 

The Logistics Regression algorithm is not suitable for data sets with more number of 

attributes and also the artifacts present in the dataset make it not perform well. In future 

preprocessing of data should be done to improve the accuracy of the machine learning 

classifier. 

 

CONCLUSION 

 

The detection and prediction of epilepsy seizure at an early identification rate is done using 

adaptive logistic regression. The machine learning classifier logistic regression algorithm 

gives (18% higher) significantly better accuracy than the naive bayes algorithm. 
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TABLES AND FIGURES 

 

Table 1. For selected classifiers using the logistic regression algorithm, the practical 

values of classifiactions accuracy, precision, recall, and specificity are 97%, 95%, 90%, 

89%, and for the naive bayes algorithm, 78%, 94%, 78%, 74%. The logistic algorithm 

outperforms the naïve bayes algorithm in terms of accuracy and specificity. 

Algorithm Accuracy(%)  precision(%)  Recall(%) Specificity(%) 

Logistic 

regression 

97% 95% 90% 89% 

 Naive Bayes 

 

78% 94% 78% 74% 

 

Table 2. The Group Statistical analysis of mean, std.deviation, std.error mean for logistic 

regression algorithm is 95.60, 7.450, 3.332 and for naive bayes algorithm is 77.00, 

.548, .245 It is observed that the Logistic regression algorithm performed significantly 

better than the naive bayes algorithm. 

 

Group Statistics 

  Group N Mean Std. 

Deviation 

Std. Error 

Mean 

Accuracy Logistic 

regression 

20 95.60 7.450 3.332 

Naive Bayes 20 77.00 .548 .245 

precision  Logistic 

regression 

20 91.20 13.982 6.253 

Naive Bayes 20 93.00 .447 .200 

specificity  Logistic 

regression 

20 89.80 20.376 9.113 
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Naive Bayes 20 12.20 1.924 .860 

recall  Logistic 

regression 

20 88.20 30.627 13.697 

Naive Bayes 20 77.00 

 

2.775 1.241 

 

Table 3. T-test using independent samples for determining significance and standard 

error. P values of less than (P<0.05) are deemed statistically significant, and 95% 

confidence intervals are used to calculate the results. 

Independent Samples Test 

  Levene'

s Test 

for 

Equality 

of 

Varianc

es 

t-test for Equality of Means 

F Si

g. 

t df Sig. 

(on

e-

side

dp) 

Sig. 

(tw

o-

side

dp) 

Mean 

Differ

ence 

Std. 

Error 

Differ

ence 

95% 

Confidenc

e Interval 

of the 

Difference 

Low

er 

Up

per 

Accur

acy 

Equal 

varia

nces 

assu

med 

5.1

30 

.0

43 

-

5.5

68 

 8 .091 .182 -3.000 2.054 -

7.7

37 

1.7

37 

Equal 

varian

ces 

not 

assu

med 

    -

5.5

68 

4.3

15 

.106 .213 -3.000 2.054 -

8.5

43 

2.5

43 

Precis

ion 

Equal 

varia

nces 

assu

med 

6.6

39 

.0

33 

-

.67
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 8 .02

1 

.04
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4.200 1.744 .17
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8.2

21 



BALTIC JOURNAL OF LAW & POLITICS ISSN 2029-0454 

VOLUME 15, NUMBER 4 2022 

 
 

       183  

 

Equal 

varian

ces 

not 

assu

med 

    -

.67

1 

4.0

08 

.02

5 

.05

1 

4.200 1.744 -

013 

8.4

13 

Specif

icity 

Equal 

varia

nces 

assu

med 

5.8

71 

.0

42 

-

8.4

78 

 8 .026 .053 1.400 .616 -

.02

2 

2.8

22 

Equal 

varian

ces 

not 

assu

med 

    -

8.4 

4.0 .02 .05 1.400 .616 -

.03

9 

2.8

39 

Recall Equal 

varia

nces 

assu

med 

7.4

83 

.0

26 

-

.88

7 

 8 .048 .09

5 

-

81.40

0 

9.726 -

40.

829 

4.0

29 

Equal 

varian

ces 

not 

assu

med 

    -

8.8

7 

4.0

66 

.06

5 

.13

0 

-

18.40

0 

9.726 -

45.

240 

8.4

40 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



BALTIC JOURNAL OF LAW & POLITICS ISSN 2029-0454 

VOLUME 15, NUMBER 4 2022 

 
 

       184  

 

   GRAPH 

 

          
 

 

Fig. 1. Logistic regression predicts the output of a categorical dependent variable. It 

gives the probabilistic values which lie between 0 and 1, 0.5 is the midpoint of Logistic 

regression, instead of fitting a regression line, it can fit an "S" shaped logistic function, 

which predicts two minimum values is 0.3 and maximum value is 0.8. 

 

 
 

 

Fig. 2. The y-axis shows the group of naive bayes and logistic regression and the y-axis 

shows the mean percentage of accuracy, precision, specificity and recall with the Error 

Bars being 95% CI and the Error Bars being +/-2SD. 

 

     

 


